Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Xiao-Ping Zhou, ${ }^{\mathbf{a}}$ Dan Lia* ${ }^{\text {a }}$ and Seik Weng $\mathbf{N g}^{\text {b }}$

${ }^{\text {a }}$ Department of Chemistry, Shantou University, Shantou, Guangdong 515063, People's Republic of China, and ${ }^{\text {b }}$ Department of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia

Correspondence e-mail: dli@stu.edu.cn

Key indicators

Single-crystal X-ray study
$T=295 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.008 \AA$
R factor $=0.041$
$w R$ factor $=0.107$
Data-to-parameter ratio $=18.9$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
© 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

Di- μ-iodo-bis[(1,10-phenanthroline- $\left.\kappa^{2} N, N^{\prime}\right)$ $\operatorname{copper}(\mathrm{I})$] acetonitrile solvate

In the title complex, $\left[\mathrm{Cu}_{2} \mathrm{I}_{2}\left(\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{~N}_{2}\right)_{2}\right] \cdot \mathrm{C}_{2} \mathrm{H}_{3} \mathrm{~N}$, two Cu^{I} atoms are bridged by two I atoms and each Cu^{I} atom is chelated by a 1,10-phenanthroline ligand to give four-coordinate tetrahedral geometry.

Comment

The study of copper(I) complexes with the 1,10-phenanthroline (phen) ligand has attracted considerable attention (Healy et al., 1985; Yu et al., 2001). In our study of the preparation of copper(I) complexes, a binuclear compound, (I), was obtained and structurally characterized.

(I)

The crystallographic analysis reveals that (I) is a binuclear complex, in which each Cu^{I} atom is in an $\mathrm{N}_{2} \mathrm{I}_{2}$ four-coordinate environment with distorted tetrahedral geometry (Fig. 1). The structure is very similar to that of $\left[\mathrm{Cu}_{2}(\mu-\mathrm{I})_{2}(\text { phen })_{2}\right] \cdot \mathrm{MeOH}$ (Healy et al., 1985). The $\mathrm{Cu}-\mathrm{I}, \mathrm{Cu}-\mathrm{N}$ and $\mathrm{Cu} \cdots \mathrm{Cu}$ distances in both complexes are similar. In (I), the dihedral angle between the two $\mathrm{Cu}_{2} \mathrm{I}$ planes is 16.74 (2) ${ }^{\circ}$ and the two phen ligands are almost parallel, with a dihedral angle of $1.80(17)^{\circ}$. Interestingly, the $\left[\mathrm{Cu}_{2}(\mu-\mathrm{I})_{2}(\text { phen })_{2}\right]$ molecules form a simple

Figure 1
ORTEPII plot (Johnson, 1976) of (I), with displacement ellipsoids drawn at the 50% probability level and H atoms drawn as spheres of arbitrary radii.

Received 19 November 2004
Accepted 1 March 2005
Online 11 March 2005
one-dimensional chain via face-to-face $\pi-\pi$ interactions between adjacent phen ligands. The distance between the parallel phen planes is 3.46 (4) \AA.

Experimental

A mixture of $\mathrm{CuI}(0.019 \mathrm{~g}, 0.1 \mathrm{mmol})$ and 1,10 -phenanthroline ($0.018 \mathrm{~g}, 0.1 \mathrm{mmol}$) in $\mathrm{CH}_{3} \mathrm{CN}(8 \mathrm{ml})$ in a 15 ml stainless steel reactor with a Teflon liner was heated to 453 K for 24 h . The reactor was cooled to room temperature at a rate of $10 \mathrm{~K} \mathrm{~h}^{-1}$. Red crystals of the title complex were collected in 57% yield. Elemental analysis calculated for $\mathrm{C}_{26} \mathrm{H}_{19} \mathrm{Cu}_{2} \mathrm{I}_{2} \mathrm{~N}_{5}$: C 39.99, H 2.42, N 8.97%; found: C 39.9 5, H 2.44, N 8.96\%. IR (KBr, cm ${ }^{-1}$): 3054 (w), 2243 (w), 1957 (w), 1617 (m), 1581 (m), 1507 (m), 1421 (s), 1216 (w), 1152 (w), 1088 (w), 1053 (w), $988(w), 837(s), 713(m), 735(s), 627(m), 417(w)$.

Crystal data

$\left[\mathrm{Cu}_{2} \mathrm{I}_{2}\left(\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{~N}_{2}\right)_{2}\right] \cdot \mathrm{C}_{2} \mathrm{H}_{3} \mathrm{~N}$
$M_{r}=782.36$
Monoclinic, $P 2_{1} / n$
$a=10.4920$ (6) \AA
$b=23.6166$ (13) \AA
$c=10.6391$ (6) \AA
$\beta=91.436$ (1) ${ }^{\circ}$
$V=2635.4(3) \AA^{3}$
$Z=4$
$D_{x}=1.972 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation

Cell parameters from 4519
reflections
$\theta=2.6-26.0^{\circ}$
$\mu=3.98 \mathrm{~mm}^{-1}$
$T=295$ (2) K
Prism, red
$0.25 \times 0.16 \times 0.15 \mathrm{~mm}$

Data collection

Bruker SMART APEX areadetector diffractometer
φ and ω scans
Absorption correction: multi-scan (SADABS; Sheldrick, 2002)
$T_{\text {min }}=0.409, T_{\text {max }}=0.550$
16362 measured reflections
5991 independent reflections 4466 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.029$
$\theta_{\text {max }}=27.5^{\circ}$
$h=-13 \rightarrow 13$
$k=-30 \rightarrow 30$
$l=-10 \rightarrow 13$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.041$
$w R\left(F^{2}\right)=0.107$
$S=1.03$
5991 reflections
317 parameters
H -atom parameters constrained

Table 1
Selected geometric parameters ($\mathrm{A},{ }^{\circ}$).

$\mathrm{I} 1-\mathrm{Cu} 1$	$2.5909(6)$	$\mathrm{Cu} 1-\mathrm{N} 1$	$2.078(3)$
$\mathrm{I} 1-\mathrm{Cu} 2$	$2.6297(7)$	$\mathrm{Cu} 1-\mathrm{N} 2$	$2.085(3)$
$\mathrm{I} 2-\mathrm{Cu} 1$	$2.5876(7)$	$\mathrm{Cu} 2-\mathrm{N} 3$	$2.099(4)$
$\mathrm{I} 2-\mathrm{Cu} 2$	$2.5953(7)$	$\mathrm{Cu} 2-\mathrm{N} 4$	$2.080(4)$
$\mathrm{I} 1-\mathrm{Cu} 1-\mathrm{I} 2$	$118.75(2)$	$\mathrm{I} 2-\mathrm{Cu} 1-\mathrm{N} 2$	$108.9(1)$
$\mathrm{I} 1-\mathrm{Cu} 1-\mathrm{N} 1$	$117.9(1)$	$\mathrm{N} 1-\mathrm{Cu} 1-\mathrm{N} 2$	$80.6(1)$
$\mathrm{I} 1-\mathrm{Cu} 1-\mathrm{N} 2$	$112.0(1)$	$\mathrm{Cu} 1-\mathrm{I} 1-\mathrm{Cu} 2$	$59.78(2)$
$\mathrm{I} 2-\mathrm{Cu} 1-\mathrm{N} 1$	$112.1(1)$	$\mathrm{Cu} 1-\mathrm{I} 2-\mathrm{Cu} 2$	$60.26(2)$

The phenanthroline and acetonitrile H atoms were placed in calculated positions with $\mathrm{C}-\mathrm{H}$ distances in the range $0.93-0.96 \AA$ and treated as riding atoms with isotropic displacement parameters of $1.2 U_{\text {eq }}($ phen $)$ or $1.5 U_{\text {eq }}(\mathrm{Me})$ of the parent C atom. The largest peak and deepest hole in the final difference Fourier map were 0.935 and $0.745 \AA$ from atom I2, respectively.

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97.

The authors thank the National Natural Science Foundation of China (grant Nos. 20271031 and 29901004), the Natural Science Foundation of Guangdong Province (grant No. 021240) and the University of Malaya for supporting this study.

References

Bruker (2002). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.
Healy, P. C., Pakawatchai, C. \& White, A. H. (1985). J. Chem. Soc. Dalton Trans. pp. 2531-2539.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Sheldrick, G. M. (2002). SADABS. University of Göttingen, Germany.
Yu, J. H., Shi, Z., Xu, J. Q., Chu, D. Q., Jin, W. J., Ding, H., Hua, J., Xu, J. N., Cui, X. B., Wang, T. G., Zhang, L. J., Li, C. B. \& Zeng, Q. X. (2001). Pol. J. Chem. 75, 1785-1789.

